Experimentelles Arbeiten im KLP G9 Physik

Nr.	Inhaltsfeld	Konkretisierte Kompetenzerwartungen: Die Schülerinnen und Schüler können	Beispielexperimente
1	IF 1	Temperaturen mit analogen und digitalen Instrumenten messen (E2, E1),	Temperaturmessungen durchführen und Messverfahren vergleichen
2	IF 1	erhobene Messdaten zu Temperaturentwicklungen nach Anleitung in Tabellen und Diagramme übertragen sowie Daten aus Diagrammen entnehmen (E4, E5, K1),	Eis und Wasser erwärmen und Temperatur messen
3	IF 1	aus Beobachtungen und Versuchen zu Wärmephänomenen (u.a. Wärmeausdehnung, Wärmetransport, Änderung von Aggregatzuständen) einfache Schlussfolgerungen ziehen und diese nachvollziehbar darstellen (E3, E5, K3),	 Plastikflasche in heißes und kaltes Wasser tauchen Bimaterialstreifen basteln und über Kerzenflamme erwärmen
4	IF 2	ausgewählte Stoffe anhand ihrer elektrischen und magnetischen Eigenschaften (elektrische Leitfähigkeit, Ferromagnetismus) klassifizieren (UF1),	Leitfähigkeit und Ferromagnetismus von Stoffen untersuchen
5	IF 2	in Grundzügen Eigenschaften des Magnetfeldes der Erde beschreiben und die Funktionsweise eines Kompasses erklären (UF3, UF4).	Funktionsweise eines Kompasses untersuchen
6	IF 2	zweckgerichtet einfache elektrische Schaltungen planen und aufbauen, auch als Parallel- und Reihenschaltung sowie UND- bzw. ODER-Schaltung (E1, E4, K1),	 Hausinstallation als Modell nachbauen Logische Schaltungen aufbauen und untersuchen
7	IF 2	Stromkreise durch Schaltsymbole und Schaltpläne darstellen und einfache Schaltungen nach Schaltplänen aufbauen (E4, K3),	Einfache Schaltungen aufbauen und zeichnen
8	IF 2	in eigenständig geplanten Versuchen die Leitungseigenschaften verschiedener Stoffe ermitteln und daraus Schlüsse zu ihrer Verwendbarkeit auch unter Sicherheitsaspekten ziehen (E4, E5, K1),	Leitfähigkeit mit Stromquelle und Lämpchen testen
9	IF 2	die Struktur von Magnetfeldern mit geeigneten Hilfsmitteln sichtbar machen und untersuchen (E5, K3).	Eisenfeilspäne im Magnetfeld untersuchen
10	IF 2	durch systematisches Probieren einfache magnetische Phänomene erkunden (E3, E4, K1),	Magnetische Anziehung und Abstoßung und Magnetisierbarkeit untersuchen

11	IF 2	die Magnetisierung bzw. Entmagnetisierung von Stoffen sowie die Untrennbarkeit der Pole mithilfe eines einfachen Modells veranschaulichen (E6, K3, UF1),	 Zerbrochene Magnete untersuchen Entmagnetisierung (mechanisch und durch Wärme)
12	IF 2	Reflexion und Absorption von Schall anhand von Beispielen erläutern (UF1),	Wecker in Dämmmaterial einpacken
13	IF 3	an ausgewählten Musikinstrumenten (Saiteninstrumente, Blasinstrumente) Möglichkeiten der Veränderung von Tonhöhe und Lautstärke zeigen und erläutern (E3, E4, E5)	Tonhöhe bei gespannten Saiten/Orgelpfeifen untersuchen
14	IF 3	mittels in digitalen Alltagsgeräten verfügbarer Sensoren Schallpegelmessungen durchführen und diese interpretieren (E4, E5),	Schallpegelmessung mit Smartphone durchführen
15	IF 3	Schallschwingungen und deren Darstellungen auf digitalen Geräten in Grundzügen analysieren (E5, UF3).	Schallpegelmessung mit Smartphone durchführen
16	IF 4	die Ausbreitung des Lichts untersuchen und mit dem Strahlenmodell erklären (E4, E5, E6),	 Lichtstrahl untersuchen (Schattenbildung, Reflexion, Brechung)
17	IF 4	Abbildungen an einer Lochkamera sowie Schattenphänomene zeichnerisch konstruieren (E6, K1, K3).	Lochkamera bauen und untersuchenSchattenbildung untersuchen
18	IF 5	die Eigenschaften und die Entstehung des Spiegelbildes mithilfe des Reflexionsgesetzes und der geradlinigen Ausbreitung des Lichts erklären (UF1, E6),	Reflexion von Lichtstrahlen untersuchen
19	IF 5	die Abhängigkeit der Brechung bzw. Totalreflexion des Lichts von den Parametern Einfallswinkel und optische Dichte qualitativ erläutern (UF1, UF2, E5, E6),	Reflexion und Brechung von Lichtstrahlen untersuchen
20	IF 5	anhand einfacher Handexperimente die charakteristischen Eigenschaften verschiedener Linsentypen bestimmen (E2, E5),	Linsen untersuchen
21	IF 5	für Versuche zu optischen Abbildungen geeignete Linsen auswählen und diese sachgerecht anordnen und kombinieren (E4, E1),	Linsen untersuchen
22	IF 5	unter Verwendung eines Lichtstrahlmodells die Bildentstehung bei Sammellinsen sowie den Einfluss der Veränderung von Parametern mittels digitaler Werkzeuge erläutern (Geometrie-Software, Simulationen) (E4, E5, UF3, UF1),	Geometrie-Software oder IBE anwenden

23	IF 5	digitale Farbmodelle (RGB, CMYK)	Digitale Farbdarstellungen
		mithilfe der Farbmischung von Licht	untersuchen
		erläutern und diese zur Erzeugung von	Additive und subtraktive
		digitalen Produkten verwenden (E6, E4,	Farbmischung untersuchen (u.a.
		E5, UF1).	mittels farbiger Leuchtmittel)
24	IF 6	den Ablauf und die Entstehung von	Himmelsphänomene am Computer
		Mondphasen sowie von Sonnen- und	oder an Realmodellen untersuchen
		Mondfinsternissen modellhaft erklären	
		(E2, E6, UF1, UF3, K3),	
25	IF 7	Kurvenverläufe in Orts-Zeit-	Bewegungsdaten aufnehmen
		Diagrammen interpretieren (E5, K3),	(Fahrrad etc.) und auswerten
26	IF 7	Messdaten zu Bewegungen oder	Bewegungsdaten aufnehmen
		Kraftwirkungen in einer	(Fahrrad etc.) und auswerten
		Tabellenkalkulation mit einer	Messungen zum Hooke'schen Gesetz
		angemessenen Stellenzahl aufzeichnen,	
		mithilfe von Formeln und	
		Berechnungen auswerten sowie	
		gewonnene Daten in sinnvollen, digital	
		erstellten Diagrammformen darstellen	
27	15.7	(E4, E5, E6, K1),	
27	IF 7	Massen und Kräfte messen sowie	Messungen zum Hooke'schen Gesetz
		Gewichtskräfte berechnen (E4, E5, UF1,	
28	IF 8	UF2), die Formelgleichungen für Druck und	Wasserdruck messen
20	IF 6	Dichte physikalisch erläutern und	• wasserdruck messen
		daraus Verfahren zur Messung dieser	
		Größen ableiten (UF1, E4, E5),	
29	IF 8	den Schweredruck in einer Flüssigkeit in	Wasserdruck messen
	0	Abhängigkeit von der Tiefe bestimmen	vusseruruek messem
		(E5, E6, UF2),	
30	IF 9	die Funktionsweise eines Elektroskops	Elektroskop positiv und negativ
		erläutern (UF1, E5, UF4, K3),	aufladen
31	IF 9	Wechselwirkungen zwischen geladenen	Wattebausch zwischen geladenen
		Körpern durch elektrische Felder	Kugeln hin- und herfliegen lassen
		beschreiben (E6, UF1, K4),	
32	IF 9	elektrische Aufladung und	Versuche zur Reibungselektrik
		Leitungseigenschaften von Stoffen	_
		mithilfe eines einfachen Elektronen-	
		Atomrumpf-Modells erklären (E6, UF1),	
33	IF 9	elektrische Schaltungen sachgerecht	Schaltungen aufbauen und testen
		entwerfen, in Schaltplänen darstellen	
		und anhand von Schaltplänen	
		aufbauen, (E4, K1),	
34	IF 9	Spannungen und Stromstärken messen	• U, R, I in Schaltungen messen
		und elektrische Widerstände ermitteln	
		(E2, E5),	
35	IF 9	Versuche zu Einflussgrößen auf den	Widerstand unterschiedlicher
		elektrischen Widerstand unter	Drahtstücke (Länge, Dicke, Material)
		Berücksichtigung des Prinzips der	messen
		Variablenkontrolle planen und	
		durchführen (E2, E4, E5, K1).	

36	IF 10	Eigenschaften verschiedener Arten ionisierender Strahlung (Alpha-, Beta-, Gammastrahlung sowie Röntgenstrahlung) beschreiben (UF1, E4),	 Absorption der Strahlungsarten messen Ablenkung von Betastrahlung im Magnetfeld
37	IF 10	die Aktivität radioaktiver Stoffe messen (Einheit Bq) und dabei den Einfluss der natürlichen Radioaktivität berücksichtigen (E4),	Strahlungsmessungen an durchführen
38	IF 10	mit dem zufälligen Prozess des radioaktiven Zerfalls von Atomkernen das Zerfallsgesetz und die Bedeutung von Halbwertszeiten erklären (E5, E4, E6),	 Würfelexperiment als Modell zum radioaktiven Zerfall durchführen Messungen am Isotopengenerator durchführen
39	IF 11	Daten zur eigenen Nutzung von Elektrogeräten (u.a. Stromrechnungen, Produktinformationen, Angaben zur Energieeffizienz) auswerten (E1, E4, E5, K2).	Haushaltgerät (Wasserkocher o.ä.) mit Energiemessgerät untersuchen, mit berechneter Energie aus der Leistungsangaben vergleichen, Kosten berechnen